Exploring Pathways Towards Heterostacks of Graphene and Hexagonal Boron Nitride

Jürg Osterwalder,

Physics Department,
University of Zürich, Switzerland

US-EU Workshop on 2D Layered Materials and Devices
Arlington, VA, April 22-24, 2015
Collaborators

Current:
Carlo Bernard
Thomas Kälin
Huanyao Cun
Elisa Miniussi
Thomas Greber

Former:
Adrian Hemmi
Silvan Roth

External Collaborations

Single-Crystal Metal Films
Michael Weinl
Stefan Gsell
Matthias Schreck
/ University of Augsburg

FNS
Fonds national suisse
Schweizerischer Nationalfonds
Fondo nazionale svizzero
Swiss National Science Foundation
Preparation of artificial 2D materials and devices

K. S. Novoselov and A. H. Castro Neto
Our approach: single-crystalline metal substrates at the four-inch wafer scale

Goals:

- single domain growth of h-BN and graphene using UHV-CVD
- explore growth modes of heterostacks
- transfer and stack single layers with defined lattice orientation

4” Si(111) wafer with 150 nm Rh(111) film (from Matthias Schreck, University of Augsburg)

… same for Ir(111), Ni(111), Ru(0001), Pt(111)…
Contents

• single-layer CVD growth on metal surfaces
• single crystal substrates for wafer scale 2D films
• CVD growth of g/h-BN heterostack on (111) surfaces
• transfer of single crystal 2D films
Growth of a h-BN monolayer on Ni(111)

CVD under UHV conditions

base pressure: 2×10^{-10} mbar
borazine exposure: 5×10^{-6} mbar

Borazine+Ni(111) → h-BN on Ni(111)+3H$_2$ at 1050 K

Coverage Θ (ML)

Borazine exposure (L)

XPS B 1s

Nagashima, Oshima et al., PRB 51, 4606 (1995)
h-BN on Ni(111)

- perfect monolayer growth on Ni(111) upon exposure to ~100 L of borazine
- good match of lattice constant (mismatch = +0.8%)
- atomic and electronic structure well known

recipe by Nagashima et al., PRB 51, 4606 (1995)
X-ray photoelectron Diffraction (XPD) experiments:

Chemically sensitive structure probe (probing depth ~ 1nm)
Can identify different phases at the interface

N 1s (1342 eV)
B 1s (1550 eV)

XPD signals:
- forward scattering:
 - B to N n.n.
 - N to B n.n.
- interference fringes
- absence of peaks near center => single layer

A (12x12) h-BN/Rh(111) superstructure

Single h-BN layer
- 13x13 h-BN on 12x12 Rh units
- periodicity: 3.2 nm
- not a simple moiré pattern
- ‘pores’ of ca. 20 Å diameter of strongly bonded h-BN
- ‘wires’ of weakly bonded h-BN

A boron nitride nanomesh!

LEED:
superstructure

Single-layer model for h-BN nanomesh

(NB) = (top, fcc)
Pentanone as a precursor for graphene growth

Contents

• single-layer CVD growth on metal surfaces
• single crystal substrates for wafer scale 2D films
• CVD growth of g/h-BN heterostack on (111) surfaces
• transfer of single crystal 2D films
Single-crystalline metal films on 4” Si wafers

Group of Matthias Schreck
Institut für Physik, Universität Augsburg

Single-crystalline Ir films for epitaxial diamond growth

-7.1%
-25.4%
-5.3%

Dia
Ir
YSZ
Si

PVD, 800°C, micrometers

e-beam evaporation, 650°C, 100 nm

PLD, 750°C, 20-40 nm

Works for (001) growth ...

Single-crystalline metal films on 4” Si wafers

... but also for (111) growth:

XPD -> twin-free diamond nucleation

XRD pole figures
-> twin free, low mosaicity

M. Fischer, M. Schreck et al.,
Single-crystalline metal films

... and also for Rh(111) growth:
The four-inch wafer growth chamber at UZH

Quality control of h-BN growth across wafer surface

Use LEED superstructure as a quality measure for h-BN film (after transfer through air + annealing)

Contents

• single-layer CVD growth on metal surfaces
• single crystal substrates for wafer scale 2D films
• CVD growth of g/h-BN heterostack on (111) surfaces
• transfer of single crystal 2D films
CVD growth beyond the monolayer: g/h-BN/Cu(111)

LEED: lattice constants

Careful analysis of LEED spots:

- each layer has a different lattice constant
- the peak positions are consistent with the intrinsic lattice constants of h-BN and graphene (2.50 Å and 2.46 Å)

=> Only small angle domains in both layers (~ 2°).
Characterisation by quantitative XPS

Composition and coverage:

After borazine exposure:
fairly stoichiometric, single layer of h-BN

After pentanone exposure:
h-BN still stoichiometric, single layer,
intensities slightly attenuated by single graphene layer on top

S. Roth et al., Nano Lett. 13, 2668 (2013)
XPD from the heterostack – a puzzle!

SSC theory (free-standing) ⇒ Single layer of h-BN ⇒ Single graphene layer
Both well ordered.

But:
Why no forward scattering of the B and N signal through the graphene layer?
Answer:
Because the layers are incommensurate!

S. Roth et al., Nano Lett. 13, 2668 (2013)
XPD: commensurate vs. incommensurate overlayer

Commensurate
- Strong forward scattering signal
- [211]

Incommensurate
- Forward scattering signals smear out completely
- [211]

S. Roth et al., Nano Lett. 13, 2668 (2013)
Confirmation: STM sees a moiré pattern

Moiré pattern on most of the terraces
Periodicity ~ 9 nm

Regular ribbons (>100 nm x 9 nm, ca. 0.8 nm high):
=> formation of grafolds?

K. Kim et al.,

S. Roth et al., Nano Lett. 13, 2668 (2013)
ARPES data: the π bands of h-BN and graphene

In the heterostack, we observe the π bands of both individual layers.

- h-BN maintains a large band gap
- graphene shows linear dispersion up to E_F
- the two layers are electronically decoupled (exhibit slightly different BZ)

S. Roth et al., Nano Lett. 13, 2668 (2013)
Contents

• single-layer CVD growth on metal surfaces
• single crystal substrates for wafer scale 2D films
• CVD growth of g/h-BN heterostack on (111) surfaces
• transfer of single crystal 2D films
A refined ‘bubbling’ method using hydrogen intercalation

Approach similar to that used for graphene in

Schematic potentiostat set-up for the bubbling transfer process.

Solution: 0.1 M HClO₄

Hydrogen intercalation prior to bubbling weakens the bonding to the metal substrate.
XPS analysis of transferred h-BN monolayer

![XPS analysis graph](image-url)
Conclusions

Single-layer CVD growth on metal surfaces:
• We can grow large domains of high quality h-BN and graphene

Single crystal substrates for wafer scale 2D films:
• Single layer quality approaching that of single crystal substrates
• Scalable approach

CVD growth of g/h-BN heterostack on (111) surfaces:
• Growth beyond single layer difficult to control
• Quality inferior to single layer growth

Transfer of single crystal 2D films:
• Transfer of h-BN single layers appears to be more difficult than graphene – optimization in progress (collaboration within Flagship)
• Can get aligned flakes
Collaborators

Current:
Carlo Bernard
Thomas Kälin
Huanyao Cun
Elisa Miniussi
Thomas Greber

Former:
Adrian Hemmi
Silvan Roth

External Collaborations

Single-Crystal Metal Films
Michael Weinl
Stefan Gsell
Matthias Schreck
/ University of Augsburg

FNS
Fonds national suisse
Schweizerischer Nationalfonds
Fondo nazionale svizzero
Swiss National Science Foundation

Graphene Flagship