2D Materials for 3D Devices... and systems?

Max Lemme

University of Siegen, Germany
University of Siegen

Young, medium-sized University
• Founded in 1972
• Restructured in 2011
• Students: 18,500
• Staff: 1,500

School of Science and Technology
100 faculty members
6000 students
Fostering interdisciplinary research
Acknowledgements

University of Siegen
Andreas Bablich
Melkamu Belete
Amit Gahoi
Satender Kataria
Sepideh Khandan Del
Himadri Pandey
Vikram Passi
Sarah Riazi-Mehr
Jasper Ruhkopf
Daniel Schneider
Stefan Wagner

KTH Royal Inst. Tech.
Anderson Smith
Sam Vaziri
Saul Rodriguez
Mikael Östling

IHP, Germany
Grzegorz Lupina
Jarek Dabrowski
Gunther Lippert
Wolfgang Mehr

Univ. Pisa
Gianluca Fiori
Guiseppe Iannaccone

Trinity College Dublin
Georg Duesberg
Chanyoung Yim

TU Vienna
Tibor Grasser

InteGraDe
(Integrating Graphene Devices)

Heisenberg-Professorship
Priority Programme „Graphene“
Graduate School 1564

GRADE
Graphene-based Devices and Circuits
for RF Applications

M-EraNet
NanoGraM

Title: Mashoff, Lemme, Morgenstern, Nano Letters 2010
Graphene and other 2D materials:

- Flexible
- High relative absorption
- Large scale production (CVD)
- Ultra broad band spectral response (graphene)
- Low absolute absorption
Graphene Photodetectors

- Performance requirements: high sensitivity, low noise, **wide band width**, high reliability and **low cost**
Graphene Photodetectors

- Vertical device architecture

Riazimehr, Lemme, ULIS, 2015
See also: Chen et al., Nano Letters, 2011
An et al., Nano Letters, 2013
Graphene Photodetectors

- Shockley equation:
 \[I = I_S \left[\exp \left(\frac{qV_d}{n k_B T} \right) - 1 \right] \]
- Ideality factor \(n = 1.52 \)
- Barrier height \(\Phi_b = 0.66 \text{ eV} \)
- \(p \) doping due to exposure to ambient atmosphere

Riazimehr, Lemme, Solid State Electronics, 2015
Graphene Photodetectors

Graphene/ n-Si photodiode

Calibrated Si photodiode

24 April 2015

NSF EU Workshop on 2D Materials - Arlington, VA
Si / MoS$_2$ Photodetectors

- High light absorption (5-10%) in visible range
- Monolayer MoS$_2$ - direct band gap of 1.8 and 2 eV
- N-type semiconductor
- Here: multilayer CVD grown MoS$_2$ on p-type silicon
- 8.26 nm thick n-MoS$_2$ (~ 12 layers)

See also: Lopez-Sanchez, Kis, ACS Nano, 2014
Si / MoS$_2$ Photodetectors

Spectral response measurement

Bulk MoS$_2$

\[\begin{align*}
\text{p-Si:} & \quad 1.07 \text{ eV (1158 nm)} \\
\text{MoS}_2 : & \\
\Sigma_M - \Gamma_V & = 1.43 \text{ eV (867 nm)} \quad 1.3 \text{ eV} \\
K_M - K_{V1} & = 2.15 \text{ eV (576 nm)} \quad 1.8 \text{ eV} \\
K_M - K_{V2} & = 2.48 \text{ eV (500 nm)} \quad 2 \text{ eV}
\end{align*} \]

\{ \text{blue-shift 0.13 eV} \quad \text{blue-shift 0.4 eV} \}

Si / MoS$_2$ Photodetectors

Interlayer spacing

- $\Delta(\Sigma_m - \Gamma_V) = 1.43$ eV (867 nm)
- $\Delta(K_m - K_{V1}) = 1.3$ eV
- $\Delta(K_m - K_{V2}) = 1.8$ eV

Lattice spacing

- $\Sigma_m - \Gamma_V = 1.43$ eV (867 nm)
- $K_m - K_{V1} = 2.15$ eV (576 nm)
- $K_m - K_{V2} = 2.48$ eV (500 nm)

- 4% compressive strain
- confirmed by TEM analysis
- CVD materials ≠ exfoliated materials

A new proposal: Graphene Base Transistor - GBT

- “Hot Electron” transistor (C. Mead, 1960s)
- Charge carriers are transported perpendicular to the graphene sheet
- Operation depends on quantum mechanical tunneling
- Speed limit set by transport through base (here: 0.35nm monolayer!)
- Optimal resistance/thickness ratio

Mehr et al, IEEE EDL, 33(5), 2012
Vaziri et al, Nano Letters, 13, 2013
Graphene Hot Electron Transistors

Device Characteristics (GBT mode)

$V_B = 0...6 \text{ V}$

$V_C = 8 \text{ V}$

$V_E = 0 \text{ V}$

Base voltage sweep

Off-state

Collector Current J_C (nA/cm2)

$V_E = 0 \text{ V}$

$V_C = 8 \text{ V}$

EBI: 5 nm SiO$_2$

BCI: 21 nm Al$_2$O$_3$

On-state

Vaziri et al, Nano Letters, 2013
THz Operation seems feasible

- GBT are less sensitive to high injection effects than HBTs
- THz operation can be reached by intrinsic GBTs with different designs [Di Lecce, ESSDERC 2014]

Graphene-based Devices and Circuits for RF Applications

www.grade-project.eu
Graphene Fabrication Methods: CVD

Chemical vapor deposition (CVD)

- Catalytic growth on Ni, Cu, Ru, Ir, TiC, Ta...
- Process Temperatures: 850-1000°C
- Transfer to random substrates
- Transfer process
- High potential for large areas (R2R)
- Monolayer vs. multilayer control (solubility)
- Quality (grain boundaries, defects etc.)

CVD process on copper substrate

Kataria et al, pss b, 2014
Challenge: Process Integration

Transfer to manufacturability

• CVD is solved
• Transfer is solved
 • ...or is it?

• The CMOS spec:
 • Even very low concentrations ($10^{10} - 10^{11}$ atoms/cm2) trace metals pose a serious threat to Si devices.
 • Contamination is often investigated with X-Ray Photoelectron Spectroscopy (XPS)
 • XPS does not provide the required resolution to detect trace elements.

Smith et al, Solid State Electronics, 2015
Challenge: Process Integration

Transfer to manufacturability

The approach:

- Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and
- Total reflection x-ray fluorescence (TXRF) →

 - Elemental fingerprints of residual contamination with a sensitivity better than 10^9 atoms/cm2.

ToF SIMS 63Cu$^+$ and 56Fe$^+$ maps on the corner of a graphene layer on SiO$_2$.

Lupina et al., ACS Nano, 2015
Challenge: Process Integration

Transfer to manufacturability - Contamination remains a serious issue

Lupina et al., ACS Nano, 2015

BUT: Kauschik et al., Solid State Technology, 2015
Bias-temperature instability in single-layer graphene FETs

- Established methodology
- 2 Gaussian distributions in Si technology to describe NBTI recovery
- Second distribution assigned to dangling bonds is absent in GFETs
- “Behaves like very early high-k”

IIlarionov, Lemme, Grasser, APL, 2014
Challenge: Circuit Design

Compact Model to Process Design Kit

- Established compact model

GFET VerilogA model and simulation results using Spectre

Fregonese, Happy, Zimmer, IEEE TNano, 2013
Rodriguez, Lemme, IEEE TED, 2014
Graphene based custom IC after fabrication

Challenge: Circuit Design

Circuit design

Layout generation

See also: Kaustav Banerjee
Challenge: Circuit Design

- Design kit developed by GRADE available for download in 10/2015
- Will be public domain
- Details to be disclosed at ESSDERC/ESSCIRC 2010 Tutorial in Graz, Austria (European Solid-State Device / Circuit Research Conference)
Summary

• 3D may be the way to go for 2D

• High responsivity in graphene / silicon photodiodes

• Spectral response measurements to probe the material properties

• Vertical hot electron transistors: high performance devices?

• Challenges towards higher TRLs will require long term efforts

Thank you for your attention!