Integration Challenges and Opportunities for Two-Dimensional Materials

Professor Mark C. Hersam
Bette and Neison Harris Chair in Teaching Excellence
Director, Materials Research Center
Northwestern University
http://www.hersam-group.northwestern.edu/

NSF US-EU Workshop on 2D Layered Materials and Devices
Arlington, Virginia
April 23, 2015
Lessons from One-Dimensional Materials

http://www.nanointegris.com/

Transitioning from the research laboratory to the marketplace for carbon nanotubes required:

- Focus on homogeneity, reproducibility, and reliability (as opposed to chasing exceptional, champion performance)
- Alternative manufacturing and fabrication approaches (e.g., printing to avoid competition with established methods)
- Unique applications (as opposed to attempting to supplant an incumbent technology)

• NanoIntegris founded in 2007
• ~700 customers in 40+ countries
• Acquired by Raymor in 2012
Outline

• Monodisperse materials
• Additive manufacturing
• New device concepts

Review Articles:
ACS Nano, 8, 1102 (2014).
Outline

- Monodisperse materials
- Additive manufacturing
- New device concepts

Review Articles:
ACS Nano, 8, 1102 (2014).
Density Gradient Ultracentrifugation of Graphene

Nano Letters, 9, 4931 (2009).

- Exfoliate graphite powder via sonication in aqueous solution with the planar surfactant sodium cholate.
- DGU enables sorting by the number of graphene layers.
DGU enables sorting of transition metal dichalcogenides by thickness including MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$.
Solution-processed BP is comparable to mechanically exfoliated BP in field-effect transistors (mobility \sim50 cm2/Vs; on/off ratio \sim104)
2D Black Phosphorus in Ambient on SiO₂

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

Nano Letters, 14, 6964 (2014).

- AFM images of unencapsulated black phosphorus (BP) in ambient conditions
- Samples are stored in the dark in ambient (relative humidity: 30-40%) between AFM images
- Apparent bubble or droplet formation and coalescence with increasing ambient exposure
- Scale bars = 1 µm
Atomic Layer Deposition AlO_x Passivation of BP

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

Nano Letters, 14, 6964 (2014).

AlO_x passivated surface shows no BP degradation, even after 34 days (now up to ~6 months) in ambient conditions.
Improved BP FET Stability After Encapsulation

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

Nano Letters, 14, 6964 (2014).

- Unencapsulated devices rapidly degrade in ambient conditions
- I_{ON}/I_{OFF} ratios and mobilities nearly constant for encapsulated devices
Outline

- Monodisperse materials
- Additive manufacturing
- New device concepts

Review Articles:
ACS Nano, 8, 1102 (2014).
• Use of a stabilizing polymer (ethyl cellulose) increases the concentration of graphene in ethanol by ~100-fold.

• Iterative solvent exchange with terpineol and water increases the graphene concentration by another factor of 10 (~1 mg/mL) without centrifugation.
Inkjet Printable Graphene for Flexible Interconnects

Journal of Physical Chemistry Letters, 4, 1347 (2013).

Available from Sigma-Aldrich: Catalog # 793663

- Inkjet printable graphene based on ethyl cellulose stabilizer in terpineol.
- Low resistivity of 4 mΩ-cm maintained following repeated flexing and even folding.
Large-Area Gravure Printable Graphene

Advanced Materials, 26, 4533 (2014).

Collaboration with Lorraine Francis and Dan Frisbie (University of Minnesota)

Ethyl cellulose stabilizer allows viscosity tuning over multiple orders of magnitude, enabling compatibility with a diverse range of printing methods.
Screen printable graphene is compatible with other materials that are commonly employed in printed/flexible electronics.
3D Printable Graphene as Conductive Bioscaffolds

High-content (60 vol%) graphene inks can be 3D printed into self-supporting, electrically conductive, and mechanically resilient structures (e.g., implantable tubular nerve conduits)

Collaboration with Ramille Shah (Northwestern University Medical School)
Outline

Monodisperse materials

Additive manufacturing

New device concepts

Review Articles:
ACS Nano, 8, 1102 (2014).
SWCNT/MoS$_2$ p-n Heterojunction Diode

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

Proceedings of the National Academy of Sciences USA, 110, 18076 (2013).
Gate bias tunes the diode rectification ratio by 5 orders of magnitude.

As a three-terminal device, it shows ‘anti-ambipolar’ transfer curves.

Proceedings of the National Academy of Sciences USA, 110, 18076 (2013).

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)
Wafer-Scale SWCNT/IGZO p-n Heterojunctions
Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

Nano Letters, 15, 416 (2015).

- Wafer-scale p-n heterojunctions can be fabricated via photolithography using p-type SWCNTs and n-type indium gallium zinc oxide (IGZO).
- ALD deposited 15 nm thick hafnia enables low voltage operation.
Anti-Ambipolar SWCNT/IGZO Heterojunctions
Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

- Anti-ambipolarity results from p-type SWCNT and n-type IGZO being fully depleted at positive and negative V_G, respectively.
- Low voltage operation with on/off ratio in excess of 10^4.
Anti-Ambipolar Phase/Frequency Shift Keying

Collaboration with Chris Kim (University of Minnesota)

→ Anti-ambipolarity enables efficient realization of communications circuits such as binary phase and frequency shift keying

→ Anti-ambipolar heterojunctions present opportunities for next-generation WiFi technology
CVD MoS$_2$ Grain Boundary Memristors

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

- Hysteretic I-V curve with low and high resistance states → memristor
- Switching ratio (ON/OFF) ~ 10^3
- Observed in devices with grain boundaries
Gate Tunability in MoS$_2$ Memristors

Collaboration with Lincoln Lauhon and Tobin Marks (Northwestern University)

- 90% of the EFM phase shift at GB
- GB dominates charge transport
- Gate-tunable set voltage in memristor
Summary

- Centrifugal solution processing allows the scalable production of highly monodisperse 2D materials

- Tunable solution rheology enables a suite of additive manufacturing options for 2D materials

- Atomically thin materials can serve as the basis of new device concepts:
 - Anti-ambipolar heterojunctions for communications circuits
 - Gate-tunable memristors for non-volatile memory and/or neuromorphic computing
Acknowledgments: Research Group and Funding

Postdocs/Scholars
- Kan-Sheng Chen
- V. Demers-Carpentier
- Sunghwan Jin
- Junmo Kang
- Jae-Hyeok Lee
- Krishna Matte
- Karl Putz
- Vinod Sangwan
- Josh Wood
- Jian Zhu

PhD Graduate Students
- Heather Arnold
- Jade Balla
- Megan Beck
- Hadallia Bergeron
- Sarah Clark
- Matt Duch
- Michael Geier
- Linda Guiney
- Laila Jaber-Ansari
- Deep Jariwala
- Joohoon Kang
- Hunter Karmel
- Brian Kiraly
- Xiaolong Liu
- Kyle Luck
- Andy Mannix
- Julian McMorrow
- Niki Mansukhmani
- Eric Pozzi
- Chris Ryder
- Ethan Secor
- Ted Seo
- Hong Sham
- Tejas Shastry
- Yujin Shin
- Amanda Walker
- Shay Wallace
- Spencer Wells

Undergraduate/MS
- Luqman Azhari
- Theo Gao
- Jianting He
- Peter Kim
- Norman Luu
- Greg Mulderink
- Laura Pettersen
- Andrew Rowberg
- Yichao Zhao

Funding provided by:
- Office of Naval Research MURI, DURIP, SBIR
- National Science Foundation MRSEC, CEIN, EFRI
- National Institutes of Health; NIST CHiMaD
- Department of Energy EFRC, SISGR
- NSF, NDSEG, NASA Fellowships
- W. M. Keck Foundation, MacArthur Foundation