DARPA/SRC STARnet

Avram Bar-Cohen
Program Manager
MTO

US-EU Workshop on 2D Layered Materials and Devices

April 23, 2015
STARnet Funded Universities

University of Minnesota

UC/Irvine
UC/Riverside
UC/Santa Barbara
U. Iowa
U. Michigan
U. Nebraska
U. North Texas
U. Arizona

University of Michigan

Columbia
Duke
GA Tech
Harvard
MIT
Northeastern
Princeton
Stanford
UC/Berkeley
UCLA
UC/San Diego
UIUC
UVA
U. Washington

Notre Dame

CALTECH
Carnegie Mellon
U. Michigan
UT/Dallas
U. Washington

UIUC

Carnegie Mellon
Princeton
Stanford
U. Michigan
UC/Santa Barbara
UC/San Diego
UC/Berkeley

UC/Berkeley

UCLA

UC/San Diego

UT/Austin

U. Iowa

42 Universities in 24 States Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
STARnet Centers

Materials/Devices Centers

Function Accelerated nanoMaterial Engineering (FAME)
Jane P-C Chang, UCLA

Theme 1: Multiferroics and Multifunctional Materials
- Perpendicular Magnetic Materials (Chung-Ah Oh)
- Spintronic Interface Engineering (Hong-IN Ahn)
- Spin Channel Materials (Chun-Geun Jo)

Theme 2: Multimetal/Spintronic Materials
- Materials for Nanoelectronics (Rakesh Dhawan)
- Role of Materials in Spintronics (Philipp Gegen

Theme 3: Van der Waals Materials (Philip Cvejanovic)
- Physical, Mechanisms & Device Prototyping (Rogelio Laskowski)

Theme 4: Physics, Mechanisms & Device Prototyping
- Spintronic Interfaces (Nikolai Bogdanov)
- Spin Transport and Interfaces (Hong-IN Ahn)
- Spin Transport and Magnetization Dynamics (Philipp Gegen

Center Focus:
- Quantum nanostructures for enabling analog, logic and memory devices and beyond Boolean computation

Center for Spintronic Materials, Interfaces and Novel Architectures, J-P Wang, UM

Center for Low Energy Systems Technology
Alan Seabuagh, Notre Dame

Center Focus:
- Exploration of solid state phenomena to extend device performance to achieve fundamental limits of ultra low voltage and power

2D Material Research across Materials/Devices Centers

TerraSwarm (TSRC-Internet of Things), Edward A. Lee, UC Berkeley

Center Focus:
- Pervasive integration of smart, networked sensors and actuators into our connected world through an open and universal systems architecture

The Center for Future Architectures Research
Todd Austin, UMi

Center Focus:
- Application driven architectures leveraging emerging circuit fabrics, such as 3D interconnect, novel memories and programmable logic

Systems on Nanoscale Information fabrics
Naresh Shanbhag, UIUC

Center Focus:
- Design of intelligent embedded systems on nanoscale CMOS and beyond CMOS device fabrics.

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
Center Focus:
• Quantum nanostructures for enabling analog, logic and memory devices and for beyond Boolean computation.
Center for Spintronic Materials, Interfaces and Novel Architectures, J-P Wang, U. Minnesota

Center Focus:
• Spin-based memory and computation with magnetic materials, spin transport, novel spin-transport materials, spintronic devices, and circuits

C-SPIN Jian-Ping Wang, Director
The Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN) seeks to overcome barriers to realizing practical spin-based memory and logic technology by assembling experts in magnetic materials, spin transport, novel spin-transport materials, spintronic devices, circuits, and novel architectures.
Center for **Low Energy** Systems Technology
Alan Seabaugh, U. Notre Dame

Center Focus:
• Exploration of solid state phenomena to extend device performance to achieve fundamental limits of ultra low voltage and power

LEAST Alan Seabaugh, Director
The Center for Low Energy Systems Technology (LEAST) explores the physics of new materials and devices to enable more energy-efficient integrated circuits and systems.
DARPA MTO invested in graphene in 2007...

Graphene Review: An Emerging RF Technology

<table>
<thead>
<tr>
<th>Metric</th>
<th>Unit</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNG Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphene Active Area</td>
<td>mm²</td>
<td>50 x 50</td>
<td>Wafer diam. ≥ 100 mm</td>
<td>Wafer diam. ≥ 200 mm</td>
</tr>
<tr>
<td>Uniformity</td>
<td>N</td>
<td>N ≥ 0 (1)</td>
<td>N ≥ 0 (2)</td>
<td>N ≥ 0 (3)</td>
</tr>
<tr>
<td>Carrier Hall Mobility</td>
<td>cm²/Vs</td>
<td>≥ 10,000</td>
<td>≥ 15,000</td>
<td>≥ 15,000</td>
</tr>
<tr>
<td>Carrier FET Mobility</td>
<td>cm²/Vs</td>
<td>≥ 5,000</td>
<td>≥ 10,000</td>
<td>≥ 15,000</td>
</tr>
<tr>
<td>V_{th} (device bias)</td>
<td>V</td>
<td>1.0</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>I_{on} (2)</td>
<td>μA/μm</td>
<td>≥ 250</td>
<td>≥ 1000</td>
<td>≥ 2000</td>
</tr>
<tr>
<td>I_{off} (2)</td>
<td>μA/μm</td>
<td>1</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>f_{max} (1)</td>
<td>GHz</td>
<td>> 300</td>
<td>> 300</td>
<td>> 500</td>
</tr>
<tr>
<td>f_{max} (1)</td>
<td>GHz</td>
<td>> 300</td>
<td>> 300</td>
<td>> 500</td>
</tr>
<tr>
<td>Demonstration Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-band LNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency: 50 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain: ≥ 15 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Figure: ≤ 1 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross wafer yield: ≥ 90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Control number of electrically active layers over required area, $N \geq 1$